منابع مشابه
Polynomial Approximations to Bessel Functions
A polynomial approximation to Bessel functions that arises from an electromagnetic scattering problem is examined. The approximation is extended to Bessel functions of any integer order, and the relationship to the Taylor series is derived. Numerical calculations show that the polynomial approximation and the Taylor series truncated to the same order have similar accuracies.
متن کاملEvaluation of integrals involving orthogonal polynomials: Laguerre polynomial and Bessel function example
Using the theory of orthogonal polynomials, their associated recursion relations and differential formulas we develop a new method for evaluating integrals that include orthogonal polynomials. The method is illustrated by obtaining the following integral result that involves the Bessel function and associated Laguerre polynomial: integral(infinity)(0) x(v)e(-x/2) J(v)(mu x)L-n(2v)(x)dx = 2(v)Ga...
متن کاملMultiple orthogonal polynomial ensembles
Multiple orthogonal polynomials are traditionally studied because of their connections to number theory and approximation theory. In recent years they were found to be connected to certain models in random matrix theory. In this paper we introduce the notion of a multiple orthogonal polynomial ensemble (MOP ensemble) and derive some of their basic properties. It is shown that Angelesco and Niki...
متن کاملOrthogonal Polynomials and Polynomial Approximations
3.1.1. Existence and uniqueness. Our immediate goal is to establish the existence of a sequence of orthogonal polynomials. Although we could, in principle, determine the coefficients a j of pn in the natural basis by using the orthogonality conditions (3.1.2), it is computationally advantageous to express pn in terms of lower-order orthogonal polynomials. Let us denote Pn := span { 1, x, x, · ·...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae (Proceedings)
سال: 1984
ISSN: 1385-7258
DOI: 10.1016/1385-7258(84)90042-8